skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Currier, Courtney"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. As rainfall extremes are expected to increase in novel magnitude and frequency, especially in dryland regions, we asked how prolonged and directional shifts to water availability may affect ecosystem carbon and nitrogen dynamics. This data set includes foliar and soil carbon and nitrogen stable isotope and concentration data collected from multiple long-term rainfall manipulation experiments at the Jornada Basin LTER. Datasets also include rainfall data adjusted to rainfall manipulation intensities. Collection dates range from 5 to 14 years since the onset of experimental treatments. The primary plant species targeted for this study were the dominant grass, Bouteloua eriopoda, and the dominant shrub, Prosopis glandulosa. 
    more » « less
  2. This dataset contains data and analysis code for the paper entitled “Acclimation of the nitrogen cycle to changes in precipitation" by Currier et al. As the frequency of precipitation extremes are expected to increase, especially in arid regions, we asked how prolonged shifts in water availability facilitate acclimation of the N cycle in a semiarid grassland. Using natural abundances of stable nitrogen isotopes for dominant plants and soils and rainfall manipulation experiments, we tested the hypothesis that N cycling will interact with water availability further amplifying the openness of the N cycle through time. For the dominant plant species, we found the relationship for N availability vs. ambient annual precipitation to be significantly positive, contrary to global spatial models. We also considered the temporal dynamics of our experiments, which imposed directional rainfall manipulations in duration ranging from 5 to 14 years. The slopes of these relationships decreased (became less positive) with more time since the onset of the directional precipitation extremes. These data and metadata supplement long-term foliar and soil isotope data from the Jornada LTER (Dataset ID: knb-lter-jrn.210586001) with a large spatial dataset from NEON data package DP1.10026.001 and Craine et al. 2018 (https://doi.org/10.5061/dryad.v2k2607). 
    more » « less
  3. Abstract Cycles of plant growth, termed phenology, are tightly linked to environmental controls. The length of time spent growing, bounded by the start and end of season, is an important determinant of the global carbon, water, and energy balance. Much focus has been given to global warming and consequences for shifts in growing‐season length in temperate regions. In conjunction with warming temperatures, altered precipitation regimes are another facet of climate change that have potentially larger consequences than temperature in dryland phenology globally. We experimentally manipulated incoming precipitation in a semiarid grassland for over a decade and recorded plant phenology at the daily scale for 7 years. We found precipitation to have a strong relationship with the timing of grass greenup and senescence but temperature had only a modest effect size on grass greenup. Pre‐season drought strongly resulted in delayed grass greenup dates and shorter growing‐season lengths. Spring and summer drought corresponded with earlier grass senescence, whereas higher precipitation accumulation over these seasons corresponded with delayed grass senescence. However, extremely wet conditions diluted this effect and caused a plateaued response. Deep‐rooted woody shrubs showed few effects of variable precipitation or temperature on phenology and displayed consistent annual phenological timing compared with grasses. Whereas rising temperatures have already elicited phenological consequences and extended growing‐season length for mid and high‐latitude ecosystems, precipitation change will be the major driver of phenological change in drylands that cover 40% of the land surface with consequences for the global carbon, water, and energy balance. 
    more » « less
  4. Increases in the abundance of woody species have been reported to affect the provisioning of ecosystem services in drylands worldwide. However, it is virtually unknown how multiple biotic and abiotic drivers, such as climate, grazing, and fire, interact to determine woody dominance across global drylands. We conducted a standardized field survey in 304 plots across 25 countries to assess how climatic features, soil properties, grazing, and fire affect woody dominance in dryland rangelands. Precipitation, temperature, and grazing were key determinants of tree and shrub dominance. The effects of grazing were determined not solely by grazing pressure but also by the dominant livestock species. Interactions between soil, climate, and grazing and differences in responses to these factors between trees and shrubs were key to understanding changes in woody dominance. Our findings suggest that projected changes in climate and grazing pressure may increase woody dominance in drylands, altering their structure and functioning. 
    more » « less
  5. Interactions among grazing pressure, climate, soil properties, and biodiversity affect ecosystem services provided by drylands. 
    more » « less
  6. Belowground organisms play critical roles in maintaining multiple ecosystem processes, including plant productivity, decomposition, and nutrient cycling. Despite their importance, however, we have a limited understanding of how and why belowground biodiversity (bacteria, fungi, protists, and invertebrates) may change as soils develop over centuries to millennia (pedogenesis). Moreover, it is unclear whether belowground biodiversity changes during pedogenesis are similar to the patterns observed for aboveground plant diversity. Here we evaluated the roles of resource availability, nutrient stoichiometry, and soil abiotic factors in driving belowground biodiversity across 16 soil chronosequences (from centuries to millennia) spanning a wide range of globally distributed ecosystem types. Changes in belowground biodiversity during pedogenesis followed two main patterns. In lower-productivity ecosystems (i.e., drier and colder), increases in belowground biodiversity tracked increases in plant cover. In more productive ecosystems (i.e., wetter and warmer), increased acidification during pedogenesis was associated with declines in belowground biodiversity. Changes in the diversity of bacteria, fungi, protists, and invertebrates with pedogenesis were strongly and positively correlated worldwide, highlighting that belowground biodiversity shares similar ecological drivers as soils and ecosystems develop. In general, temporal changes in aboveground plant diversity and belowground biodiversity were not correlated, challenging the common perception that belowground biodiversity should follow similar patterns to those of plant diversity during ecosystem development. Taken together, our findings provide evidence that ecological patterns in belowground biodiversity are predictable across major globally distributed ecosystem types and suggest that shifts in plant cover and soil acidification during ecosystem development are associated with changes in belowground biodiversity over centuries to millennia. 
    more » « less